Системы и сети связи
  Гаджеты Психология отношений Здоровье Библиотека  
Многоканальные телекоммуникационные системы
Введение в цифровой способ передачи сигналов
Преобразование сигналов в СЦТС
Мультиплексоры СЦТС
Технология WiMAX
Общие сведения о WiMAX
Передача сигналов в WiMAX
Многоантенные технологии в WiMAX-системах связи
Средства обеспечения безопасности
Описание стандарта IEEE 802.16-2004
Физический уровень
Сведения о стандарте IEEE 802.16e
Оборудование WiMAX
Технология LTE
Введение в LTE
Понятие радиоинтерфейса
Средства связи с подвижными объектами
Основы построения ССсПО
Кодирование речи в ССсПО
Цифровая модуляция
Модели распространения радиоволн
Модели физического уровня беспроводных сетей
Канальный уровень беспроводных сетей
Основные характерис- тики систем связи с ПО
GSM-900 и DSC-1800
CDMA
Хэндовер
Цифровые системы второго поколения
Транкинговые системы
Беспроводные системы
Цифровые радио- релейные линии связи
Основные положения
Системы спутниковой связи с ПО
Принципы построения
Зоны обслуживания
 

Технология беспроводного доступа WiMAX

Теоретические основы передачи сигналов в системах WiMAX:


1. Передача сигналов в пределах прямой видимости
   1.1. Потери в свободном пространстве
   1.2. Влияние окружающего пространства
   1.3. Влияние эффекта Доплера
   1.4. Влияние шумов
2. Передача сигнала в условиях многолучевого распространения
3. Метод снижения влияния интерференционных помех
4. Технологии расширения спектра и методы модуляции
   4.1. Определение понятия "ширина спектра"
   4.2. Метод прямого расширения спектра
   4.3. Ортогональное частотное разделение со многими поднесущими (OFDM)
   4.4. Фазовая модуляция BPSK и QPSK
   4.5. Квадратурная амплитудная модуляция QAM
5. Использование лицензированных и нелицензированных частотных полос
Передача сигнала в условиях многолучевого распространения

        Распространение радиосигнала в городских условиях кардинально отличается от условий распространения прямой видимости. Помимо всех помех и шумов, рассмотренных для случая прямой видимости (LOS), появляется множество дополнительных, нежелательных эффектов. Наличие большого количества застроек, высотных зданий, труб, структура улиц, возможные перепады уровня земной поверхности и т. п. приводит к многократному отражению сигнала. Даже если приемное устройство находится в стационарном состоянии, уровень принимаемого сигнала может меняться за счет отражений от движущихся транспортных средств. В результате на приемную антенну практически всегда приходит множество копий сигнала (много лучей — отсюда термин "многолучевое распространение") с разными уровнями и разными задержками по времени, как это показано на рис. 3.2.

        Ситуация существенно усугубляется для приемников мобильных станций как в системах сотовой связи, так и в системе WiMAX. В большинстве случаев прямой видимости между базовой станцией и мобильным терминалом может и не быть. Во время движения ситуация меняется многократно. Многолучевый характер распространения сигнала приводит к интерференции и, как следствие, к изменению уровня принимаемого сигнала. Динамический диапазон флуктуации уровня принимаемого сигнала составляет более 40 дБ! Причем ситуация меняется десятки раз в секунду для пешехода с мобильным терминалом, и сотни раз в секунду — для пользователя в автомобиле.
        Для уверенного приема полезного сигнала мощность сигнала должна превышать мощность шумов в несколько раз. Удобно пользоваться отношением сигнал/шум (signal-to-noise ratio — SNR).
        Для систем WiMAX (IEEE 802.16, 802.16а) первого этапа, развертываемых по схеме "точка-многоточка" (Point-to-Point — РМР) с фиксированным расположением антенн базовых и пользовательских станций, можно будет обеспечить связь не только в пределах прямой видимости, но и в условиях непрямой видимости (NLOS) за счет отраженного луча. Для этого во время инсталляции необходимо надлежащим образом выбрать местоположение антенн станций пользователей. Небольшие флуктуации уровня принимаемого сигнала, вызванные случайными отражениями от проезжающих транспортных средств, статистически могут быть предсказуемы и учтены при настройке оборудования. При фиксированном расположении антенн в случае одновременного приема как прямых, так и отраженных волн, сравнительно нетрудно определить фазовый сдвиг между прямым и отраженными сигналами (он будет постоянным для фиксированного положения антенн) и компенсировать разницу задержек времени распространения прямой и отраженной волн. Например, с помощью эквалайзера (equalizer) — выравнивателя фазовых задержек или введения задержки прямого луча, равного задержке отраженного сигнала с наибольшим уровнем. Вдобавок для фиксированного расположения на станциях пользователей применяют направленные антенны, что позволяет во многом избавиться от отражений, приходящих с боковых направлений.
        Все существенно ухудшается при организации связи с мобильными абонентами. В этом случае многолучевость и вызванный ей случайный характер временных задержек отраженных сигналов приводят к двум нежелательным эффектам. Во-первых, из-за интерференции волн на приемной антенне и базовой станции, и станции пользователя всегда наблюдаются весьма значительные колебания уровня принимаемого сигнала. Во-вторых, появление многочисленных копий прямого и отраженных сигналов, приходящих в разные случайные моменты времени, приводит к частичному наложению их друг на друга. Учитывая, что в современных системах цифровой подвижной связи используют импульсный (пачечный) характер посылок, часто возникают моменты, при которых отраженные импульсы предыдущих посылок принимаются одновременно с текущей посылкой, как это показано на рис. 3.3. Радиоимпульсы текущей и предыдущей посылок могут полностью или частично перекрываться, и восстановление текущих данных становится затруднительным или даже невозможным. Серым цветом изображены радиоимпульсы (основной и его копии) предыдущей посылки, а черным цветом текущий радиоимпульс и его копии.

        Интерференция прямых и отраженных волн приводит к изменениям амплитуды принимаемых сигналов — замираниям (федингам—fading). Динамический диапазон замираний может достигать 40—45 дБ. Замирания принято подразделять на быстрые и медленные.
        Быстрые замирания возникают вследствие того, что в СВЧ-диапазоне длина волны составляет единицы-десятки сантиметров. В сложной обстановке наличие множества отраженных сигналов со случайными величинами амплитуды и фазы приводит к сильным изменениям уровня принимаемого сигнала даже при незначительных перемещениях мобильного абонента. Например, почти каждый владелец сотового телефона попадал в места не очень уверенного приема. Можно было заметить, что даже в пределах комнаты могут найтись положения, когда связь пропадает, хотя стоит сделать небольшой шаг в сторону — и связь восстанавливается. При разговоре на ходу также часто можно заметить кратковременные пропадания звука.
        Медленные замирания возникают вследствие того, что по мере движения мобильного терминала меняется окружающая обстановка и происходят относительно медленные изменения средней энергии на антенне приемного устройства. По мере удаления от базовой станции уменьшается уровень прямой и отраженных волн, и характер медленных замираний становится менее выраженным. В целом, характер медленных и быстрых замираний по мере удаления от базовой станции можно представить в виде графика, изображенного на рис. 3.4. На этом рисунке пунктиром показан пример медленных замираний, а сплошной линией пример быстрых замираний. Подобные графики получают и при натурных измерениях уровня принимаемого сигнала.

        
Перейти к теме "Метод снижения влияния интерференционных помех"

 
 
Motoking
ICQ: 489-725-489
E-mail: iMoto88@mail.ru