Системы и сети связи
  Гаджеты Психология отношений Здоровье Библиотека  
Многоканальные телекоммуникационные системы
Введение в цифровой способ передачи сигналов
Преобразование сигналов в СЦТС
Мультиплексоры СЦТС
Технология WiMAX
Общие сведения о WiMAX
Передача сигналов в WiMAX
Многоантенные технологии в WiMAX-системах связи
Средства обеспечения безопасности
Описание стандарта IEEE 802.16-2004
Физический уровень
Сведения о стандарте IEEE 802.16e
Оборудование WiMAX
Технология LTE
Введение в LTE
Понятие радиоинтерфейса
Средства связи с подвижными объектами
Основы построения ССсПО
Кодирование речи в ССсПО
Цифровая модуляция
Модели распространения радиоволн
Модели физического уровня беспроводных сетей
Канальный уровень беспроводных сетей
Основные характерис- тики систем связи с ПО
GSM-900 и DSC-1800
CDMA
Хэндовер
Цифровые системы второго поколения
Транкинговые системы
Беспроводные системы
Цифровые радио- релейные линии связи
Основные положения
Системы спутниковой связи с ПО
Принципы построения
Зоны обслуживания
 

Технология беспроводного доступа WiMAX

Теоретические основы передачи сигналов в системах WiMAX:


1. Передача сигналов в пределах прямой видимости
   1.1. Потери в свободном пространстве
   1.2. Влияние окружающего пространства
   1.3. Влияние эффекта Доплера
   1.4. Влияние шумов
2. Передача сигнала в условиях многолучевого распространения
3. Метод снижения влияния интерференционных помех
4. Технологии расширения спектра и методы модуляции
   4.1. Определение понятия "ширина спектра"
   4.2. Метод прямого расширения спектра
   4.3. Ортогональное частотное разделение со многими поднесущими (OFDM)
   4.4. Фазовая модуляция BPSK и QPSK
   4.5. Квадратурная амплитудная модуляция QAM
5. Использование лицензированных и нелицензированных частотных полос
Влияние окружающего пространства

        На уровне сигнала в точке приема заметно отражается состояние атмосферы. Утреннее и вечернее состояние, сезонные изменения, плотность атмосферы могут искривлять путь прохождения волн, что на больших расстояниях может приводить к уменьшению энергии сигнала в точке приема. Существенное влияние оказывает наличие тумана и дождя. Капли тумана и дождя вызывают поглощение радиоволн и их рассеяние. Пик таких потерь приходится на диапазон частот вблизи 22 ГГц. При вертикальной поляризации волн поглощение в каплях дождя меньше, чем при горизонтальной поляризации. Вблизи 60 ГГц наблюдается заметное поглощение энергии радиоволн молекулами кислорода. На частотах ниже 15 ГГц эти явления сказываются гораздо меньше.
        Наличие отражающих объектов, находящихся в стороне от прямой, связывающей приемную и передающую антенны, может привести к попаданию на приемную антенну отраженных сигналов, являющихся копиями основного сигнала. Поскольку прямой и отраженный сигналы проходят разные по величине пути (что равносильно сдвигу фаз колебаний относительно друг друга), то в точке приема происходит их интерференция. При этом амплитуда сигнала на приемной антенне может как суммироваться (при разности путей на длину волны), так и вычитаться (при разности путей на половину длины волны). Такие явления называют замираниями. Для движущихся объектов эти замирания носят меняющийся во времени характер. Причем могут происходить изменения амплитуды как относительно медленные, так и очень быстрые. На частотах порядка единиц гигагерц длина волны составляет единицы-десятки сантиметров, поэтому быстрые замирания могут происходить даже при малых перемещениях антенны приемника. Характер медленных и быстрых замираний хорошо описывается законом Релея.
        Следует помнить еще об одном механизме возникновения уменьшения уровня принимаемого сигнала, вызванного интерференцией. Этот механизм проявляется и при фиксированном положении передающей и приемной антенн, и при наличии прямой видимости. Он вызван наличием условных зон Френеля. Если на пути распространения волны имеется отражающий объект, высота которого достигает первой зоны Френеля, то отраженный сигнал в точке приема будет интерферировать с волной, пришедшей по пути геометрической линии между антеннами. Вообще любой отражающий объект в пределах первой зоны Френеля согласно принципу Гюйгенса может рассматриваться как источник вторичных волн, которые могут распространяться в направлении приемной антенны и вызывать интерференцию с прямой волной. Отраженные в пределах этой зоны волны в той или иной мере находятся "не в фазе" с прямой волной, и уровень сигнала в точке приема изменяется. На рис. 3.1 показаны пояснения этого механизма.

        Радиус первой полузоны Френеля , зависит от длины волны и расстояния. В зависимости от отношения длины пути A-D-B отраженной волны к длине пути прямого луча уровень приема может как увеличиться, когда прямая и отраженная волны складываются в фазе, так и уменьшиться, если они придут в противофазе. Уровень сигнала в точке приема определяется с учетом поправочного множителя ослабления.
        U = Uo*M
        где — множитель ослабления; К— коэффициент отражения объекта.
        Радиус полузоны Френеля составляет примерно 0,6 от радиуса первой зоны Френеля, определяемой выражением: . При попадании отражающего объекта в промежуток между полузоной и первой зоной трасса полузакрытая, но связь еще возможна. Если же просвет между прямым лучом и отражающим объектом станет меньше радиуса полузоны Френеля h < Ro то отраженный сигнал будет приходить в точку приема в противофазе и может оказаться ослабленным ниже допустимой величины, или трасса окажется закрытой и устойчивая связь будет невозможна. Следовательно, при проектировании трассы радиолуча следует избегать препятствий, высота которых достигает 0,6 радиуса первой зоны Френеля. Если невозможно избежать такое препятствие, необходимо увеличить высоту передающей и приемной антенн.
        
Перейти к теме "Влияние эффекта Доплера"

 
 
Motoking
ICQ: 489-725-489
E-mail: iMoto88@mail.ru